Multiview SVBRDF capture from unified shape and illumination

投稿者: 藤代 一成 投稿日:

Liang Yuan, Issei Fujishiro

Visual Informatics, July 2023.

[doi: 10.1016/j.visinf.2023.06.006]
Abstract
This paper proposes a stable method for reconstructing spatially varying appearances (SVBRDFs) from multiview images captured under casual lighting conditions. Unlike flat surface capture methods, ours can be applied to surfaces with complex silhouettes. The proposed method takes multiview images as inputs and outputs a unified SVBRDF estimation. We generated a large-scale dataset containing the multiview images, SVBRDFs, and lighting appearance of vast synthetic objects to train a two-stream hierarchical U-Net for SVBRDF estimation that is integrated into a differentiable rendering network for surface appearance reconstruction. In comparison with state-of-the-art approaches, our method produces SVBRDFs with lower biases for more casually captured images.

2023年の業績ページはこちら

カテゴリー: 2023国際学術誌

0件のコメント

コメントを残す

アバタープレースホルダー

メールアドレスが公開されることはありません。 が付いている欄は必須項目です